Полное напряжение сопромат. Напряжение: полное, нормальное, касательное. Более сложные задачи

Как уже известно, внешние сосредоточенные (т. е. приложенные в точке) нагрузки реально не существуют. Они представляют собой статический эквивалент распределенной нагрузки.

Аналогично сосредоточенные внутренние силы и моменты, характеризующие взаимодействие между отдельными частями элемента (или между отдельными элементами конструкции), являются также лишь статическим эквивалентом внутренних сил, распределенных по площади сечения.

Эти силы, так же как и внешние нагрузки, распределенные по поверхности, характеризуются их интенсивностью, которая равна

где - равнодействующая внутренних сил на весьма малой площадке проведенного сечения (рис. 7.1, а).

Разложим силу на две составляющие: касательную АТ и нормальную , из которых первая расположена в плоскости сечения, а вторая перпендикулярна к этой плоскости.

Интенсивность касательных сил в рассматриваемой точке сечения называется касательным напряжением и обозначается (тау), а интенсивность нормальных сил - нормальным напряжением и обозначается (сигма). Напряжения выражаются формулами

Напряжения имеют размерность и т. д.

Нормальное и касательное напряжения являются составляющими полного напряжения в рассматриваемой точке по данному сечению (рис. 7.1, б). Очевидно, что

Нормальное напряжение в данной точке по определенному сечению характеризует интенсивность сил отрыва или сжатия частиц элемента конструкций, расположенных по обе стороны этого сечения, а касательное напряжение - интенсивность сил, сдвигающих эти частицы в плоскости рассматриваемого сечения. Величины напряжений а и в каждой точке элемента зависят от направления сечения, проведенного через эту точку.

Совокупность напряжений , действующих по различным площадкам, проходящим через рассматриваемую точку, представляет собой напряженное состояние в этой точке.

Нормальные и касательные напряжения имеют в сопротивлении материалов весьма важное значение, так как от их величин зависит прочность сооружения.

Нормальные и касательные напряжения в каждом поперечном сечении бруса связаны определенными зависимостями с внутренними усилиями, действующими в этом сечении. Для получения таких зависимостей рассмотрим элементарную площадку поперечного сечения F бруса с действующими по этой площадке нормальными а и касательными напряжениями (рис. 8.1). Разложим напряжения на составляющие параллельные соответственно осям у и . На площадку действуют элементарные силы параллельные соответственно осям Проекции всех элементарных сил (действующих на все элементарные площадки сечения F) на оси и их моменты относительно этих осей определяются выражениями

Напряжением называется интенсивность действия внутренних сил в точке тела , то есть, напряжение - это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение - это поверхностная нагрузка, возникающая на внутренних поверхностях соприкасания частей тела.

Деформацией называется изменение размеров и формы тела под действием приложенных сил.

Напряжением называется отношение действующего усилия к площади поперечного сечения тела или образца σ = P/F . В зависимости от направления действия силы нормальные напряжения подразделяют на растягивающие и сжимающие . Различают временные и остаточные напряжения. Временные напряжения возникают под действием внешней нагрузки и исчезают после ее снятия, остаточные - остаются в теле после прекращения действия нагрузки.

Если после прекращения действия внешних сил изменения формы, структуры и свойств тела полностью устраняются, то такая деформация называется упругой .

При возрастании напряжений выше предела упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации, оставшаяся часть называется пластической деформацией .

Норм напряжение:

Составляющая напряжений, направленных по нормали к площадке ее действия.

Касат напряжение:

Составляющая напряжений, лежащих в плоскости сечения.

Правила знаков:

Нормальные напряжения σ принимаются положительными (т.е. σ>0), если они растягивают выделенный элемент бруса.

Касательные напряжения τ принимаются положительными (т.е. τ>0), если они стремятся повернуть рассматриваемый элемент бруса по ходу часовой стрелки.

При растяжении-сжатии

Внутренняя продольная сила N , которая стремится растянуть рассматриваемую частьбруса , считается положительной. Сжимающая продольная сила имеет отрицательный знак.

При кручении

Внутренний скручивающий момент T считается положительным, если он стремится повернуть рассматриваемую часть бруса против хода часовой стрелки, при взгляде на него со стороны внешней нормали.

При изгибе

Внутренняя поперечная сила Q считается положительной, в случае, когда она стремится повернуть рассматриваемую часть бруса по ходу часовой стрелки.

Внутренний изгибающий момент M положителен, когда он стремится сжать верхние волокна бруса.

Деформация при растяжении-сжатии Δl считается положительной, если длина стержняпри этом увеличивается.

При плоском поперечном изгибе

Вертикальное перемещение сечения бруса принимается положительным, если оно направлено вверх от начального положения.

Правило знаков при составлении уравнений статики

- для проекций сил на оси системы координат

Проекции внешних сил на оси системы координат принимаются положительными, если их направление совпадает с положительным направлением соответствующей оси.

- для моментов

Сосредоточенные моменты и моменты сил в уравнениях статики записываются с положительным знаком, если они стремятся повернуть рассматриваемую систему против хода часовой стрелки.

Правило знаков при составлении уравнений статики для неподвижных систем

При составлении уравнений равновесия статичных (неподвижных) систем (например, приопределении опорных реакций ), последние два правила упрощаются до вида:

Проекции сил и моменты, имеющие одинаковое направление принимаются положительными, а соответственно проекции сил и моменты обратного направления – отрицательными.

ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ

Если все векторы напряжений параллельны одной и той же плоскости, напряженное состояние называется плоским (рис. 1). Иначе: напряженное состояние является плоским, если одно из трех главных напряжений равно нулю.

Рисунок 1.

Плоское напряженное состояние реализуется в пластине, нагруженной по ее контуру силами, равнодействующие которых расположены в ее срединной плоскости (срединная плоскость - плоскость, делящая пополам толщину пластины).

Направления напряжений на рис. 1 приняты за положительные. Угол α положителен, если он откладывается от оси х к оси у. На площадке с нормалью n:

Нормальное напряжение σ n положительно, если оно растягивающее. Положительное напряжение показано на рис. 1. Правило знаков дляпо формуле (1) то же самое, что для напряженийпо формуле (1).

Данное здесь правило знаков относится к наклонным площадкам. В статье «Объёмное напряженное состояние» сформулировано правило знаков для компонентов напряжений в точке, т. е. для напряжений на площадках, перпендикулярных осям координат. Это правило знаков принято в теории упругости.

Главные напряжения на площадках, перпендикулярных плоскости напряжений:

Наибольшее и наименьшее касательные напряжения

Эти напряжения действуют на площадках, расположенных под углом 45° к первой и второй главным площадкам.

Напряжение – мера распределения внутренних сил по сечению.

Где
- внутренняя сила, выявленная на площадке
.

Полное напряжение
.

Нормальное напряжение – проекция вектора полного напряжения на нормаль обозначается через σ.
, где Е – модуль упругости I рода, ε – линейная деформация. Нормальное напряжения вызывается только изменением длин волокон, направлением их действий, а угол поперечных и продольных волокон не искажается.

Касательное напряжение – составляющие напряжения в плоскости сечения.
, где
(для изотропного материала) – модуль сдвига (модуль упругости II рода), μ – коэффициент Пуассона (=0,3), γ – угол сдвига.

7. Закон Гука для одноосного напряжённого состояния в точке и закон Гука для чистого сдвига. Модули упругости первого и второго рода, их физический смысл, математический смысл и графическая интерпретация. Коэффициент Пуассона.

- закон Гука для одноосного напряжённого состояния в точке.

Е – коэффициент пропорциональности (модуль упругости I рода). Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и σ, т.е. в кГ/см 2 .

- закон Гука для сдвига.

G– модуль сдвига (модуль упругости II рода). Размерность модуляGтакая же, как и у модуля Е, т.е. кГ/см 2 .
.

μ – коэффициент Пуассона (коэффициент пропорциональности).
. Безразмерная величина, характеризующая свойства материала и определяющаяся экспериментально и лежит в интервале от 0,25 до 0,35 и не могут превышают 0,5 (для изотропного материала).

8. Центральное растяжение (сжатие) прямого бруса. Определение внутренних продольных сил методом сечений. Правило знаков для внутренних продольных сил. Привести примеры расчёта внутренних продольных сил.

Брус испытывает состояние центрального растяжения (сжатия) в том случае, если в его поперечных сечениях возникают центральные продольные силы N z (т.е. внутренняя сила, линия действия которой направлена по осиz), а остальные 5 силовых факторов равны нулю (Q x =Q y =M x =M y =M z =0).

Правило знаков для N z: истинная растягивающая сила – «+», истинная сжимающая сила – «-».

9. Центральное растяжение (сжатие) прямого бруса. Постановка и решение задачи об определении напряжений в поперечных сечениях бруса. Три стороны задачи.

Постановка: Прямой брус из однородного материала, растянутый (сжатый) центральными продольными силами N. Определить напряжение, возникающее в поперечных сечениях бруса, деформации и перемещения поперечных сечений бруса в зависимости от координатzэтих сечений.

10. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

.

При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σ z , постоянное во всех точках поперечного сечения и равноеN z /F.
, гдеEF– жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).

11. Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой.
(На сколько удлинится одна часть, на столько сожмётся вторая).

Нормальные условия - 20º С.
.f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.

12. Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.

Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.

Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.

Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δlобразец получит остаточное удлинение.

Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.

Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.

Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.

Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.

Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.

13. Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.

В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация ε ост =0,002 или 0,2%. В некоторых случаях устанавливается предел ε ост =0,5%.

max|σ z |=[σ].
,n>1(!) – нормативный коэффициент запаса прочности.

- фактический коэффициент запаса прочности.n>1(!).

14. Центральное растяжение (сжатие) прямого бруса. Расчёты на прочность и жёсткость. Условие прочности. Условие жёсткости. Три типа задач при расчёте на прочность.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

max|σ z | растяж ≤[σ] растяж;max|σ z | сжатия ≤[σ] сжатия.

15.Обобщённый закон Гука для трёхосного напряжённого состояния в точке. Относительная объёмная деформация. Коэффициент Пуассона и его предельные значения для однородного изотропного материала.

,
,
. Сложив эти уравнения, получим выражение объёмной деформации:
. Это выражение позволяет определить предельное значение коэффициента Пуассона для любого изотропного материала. Рассмотрим случай, когда σ x =σ y =σ z =р. В этом случае:
. При положительном р величина θ должна быть также положительной, при отрицательном р изменение объёма будет отрицательным. Это возможно только в том случае, когда μ≤1/2. Следовательно, значение коэффициента Пуассона для изотропного материала не может превышать 0,5.

16. Соотношение между тремя упругими постоянными для изотропного материала (без вывода формулы).

,
,
.

17. Исследование напряжённо-деформированного состояния в точках центрально-растянутого (сжатого) прямого бруса. Закон парности касательных напряжений.

,
.

- закон парности касательных напряжений.

18. Центральное растяжение (сжатие) бруса из линейно-упругого материала. Потенциальная энергия упругой деформации бруса и её связь с работой внешних продольных сил, приложенных к брусу.

А=U+K. (В результате работы накапливается потенциальная энергия деформированного телаU, кроме того, работа идёт на совершение скорости массе тела, т.е. преобразуется в кинетическую энергию).

Если центральное растяжение (сжатие) бруса из линейно-упругого материала производится очень медленно, то скорость перемещения центра масс тела будет весьма малой. Такой процесс нагружения называется статическим. Тело в любой момент находится в состоянии равновесия. В этом случае А=U, и работа внешних сил целиком преобразуется в потенциальную энергию деформации.
,
,
.

Напряжением называется интенсивность действия внутренних сил в точке тела, то есть, напряжение - это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение - это , возникающая на внутренних поверхностях соприкасания частей тела. Напряжение, так же как и интенсивность внешней поверхностной нагрузки, выражается в единицах силы, отнесенных к единице площади:Па=Н/м 2 (МПа = 10 6 Н/м 2 , кгс/см 2 =98 066 Па ≈ 10 5 Па, тс/м 2 и т. д.).

Выделим небольшую площадку ∆A . Внутреннее усилие, действующее на нее, обозначим ∆\vec{R}. Полное среднее напряжение на этой площадке \vec{р} = ∆\vec{R}/∆A . Найдем предел этого отношения при ∆A \to 0 . Это и будет полным напряжение на данной площадке (точке) тела.

\textstyle \vec{p} = \lim_{\Delta A \to 0} {\Delta\vec{R}\over \Delta A}

Полное напряжение \vec p, как и равнодействующая внутренних сил, приложенных на элементарной площадке, является векторной величиной и может быть разложено на две составляющие: перпендикулярное к рассматриваемой площадке – нормальное напряжение σ n и касательное к площадке – касательное напряжение \tau_n. Здесь n – нормаль к выделенной площадке .

Касательное напряжение, в свою очередь, может быть разложено на две составляющие, параллельные координатным осям x, y , связанным с поперечным сечением – \tau_{nx}, \tau_{ny}. В названии касательного напряжения первый индекс указывает нормаль к площадке,второй индекс — направление касательного напряжения.

$$\vec{p} = \left[\matrix{\sigma _n \\ \tau _{nx} \\ \tau _{nx}} \right]$$

Отметим, что в дальнейшем будем иметь дело главным образом не с полным напряжением \vec p , а с его составляющими σ_x,\tau _{xy}, \tau _{xz} . В общем случае на площадке могут возникать два вида напряжений: нормальное σ и касательное τ .

Тензор напряжений

При анализе напряжений в окрестности рассматриваемой точки выделяется бесконечно малый объемный элемент (параллелепипед со сторонами dx, dy, dz ), по каждой грани которого действуют, в общем случае, три напряжения, например, для грани, перпендикулярной оси x (площадка x) – σ_x,\tau _{xy}, \tau _{xz}

Компоненты напряжений по трем перпендикулярным граням элемента образуют систему напряжений, описываемую специальной матрицей – тензором напряжений

$$ T _\sigma = \left[\matrix{
\sigma _x & \tau _{yx} & \tau _{zx} \\
\tau _{xy} & \sigma _y & \tau _{zy} \\ \tau _{xz} & \tau _{yz} & \sigma _z
}\right]$$

Здесь первый столбец представляет компоненты напряжений на площадках,
нормальных к оси x, второй и третий – к оси y и z соответственно.

При повороте осей координат, совпадающих с нормалями к граням выделенного
элемента, компоненты напряжений изменяются. Вращая выделенный элемент вокруг осей координат, можно найти такое положение элемента, при котором все касательные напряжения на гранях элемента равны нулю.

Площадка, на которой касательные напряжения равны нулю, называется главной площадкой .

Нормальное напряжение на главной площадке называется главным напряжением

Нормаль к главной площадке называется главной осью напряжений .

В каждой точке можно провести три взаимно-перпендикулярных главных площадки.

При повороте осей координат изменяются компоненты напряжений, но не меняется напряженно-деформированное состояние тела (НДС).

Внутренние усилия есть результат приведения к центру поперечного сечения внутренних сил, приложенных к элементарным площадкам. Напряжения – мера, характеризующая распределение внутренних сил по сечению.

Предположим, что нам известно напряжение в каждой элементарной площадке. Тогда можно записать:

Продольное усилие на площадке dA : dN = σ z dA
Поперечная сила вдоль оси х: dQ x = \tau {zx} dA
Поперечная сила вдоль оси y: dQ y = \tau {zy} dA
Элементарные моменты вокруг осей x,y,z: $$\begin{array}{lcr} dM _x = σ _z dA \cdot y \\ dM _y = σ _z dA \cdot x \\ dM _z = dM _k = \tau _{zy} dA \cdot x - \tau _{zx} dA \cdot y \end{array}$$

Выполнив интегрирование по площади поперечного сечения получим:

То есть, каждое внутренне усилие есть суммарный результат действия напряжений по всему поперечному сечению тела.

Мерой интенсивности внутренних сил, распределенных по сечениям, служат напряжения – усилия, приходящиеся на единицу площади сечения. Выделим в окрестности точки B малую площадку Δ F (рис. 3.1). Пусть Δ R - равнодействующая внутренних сил, действующих на эту площадку. Тогда среднее значение внутренних сил, приходящихся на единицу площади Δ F рассматриваемой площадки, будет равно:

Рис. 3.1. Среднее напряжение на площадке

Величина p m называется средним напряжением . Она характеризует среднюю интенсивность внутренних сил. Уменьшая размеры площади, в пределе получим

Величина p называется истинным напряжением или просто напряжением в данной точке данного сечения.

Единица напряжения – паскаль, 1 Па = 1 Н/м 2 . Так как реальные значения напряжений будут выражаться очень большими числами, то следует применять кратные значения единиц, например МПа (мегапаскаль) 1 МПа= 10 6 Н/м 2 .

Напряжения, как и силы, являются векторными величинами. В каждой точке сечения тела полное напряжение p можно разложить на две составляющие (рис. 3.2):

1) составляющую, нормальную к плоскости сечения. Эта составляющая называется нормальным напряжением и обозначается σ ;

2) составляющую, лежащую(в плоскости сечения. Эта составляющая обозначается τ и называется касательным напряжением . Касательное напряжение в зависимости от действующих сил может иметь любое направление в плоскости сечения. Для удобства τ представляют в виде двух составляющих по направлению координатных осей. Принятые обозначения напряжений показаны ни рис. 3.2

У нормального напряжения ставится индекс, указывающий какой координатной оси параллельно данное напряжение. Растягивающее нормальное напряжение считается положительным, сжимающее – отрицательным . Обозначения касательных напряжений имеют два индекса: первый из них указывает, какой оси параллельна нормаль к площадке действия данного напряжения, а второй – какой оси параллельно само напряжение. Разложение полного напряжения на нормальное и касательное имеет определенный физический смысл. Нормальное напряжение возникает, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц материала по плоскости сечения.

Рис. 3.2. Разложение вектора полного напряжения

Если мысленно вырезать вокруг какой-нибудь точки тела элемент в виде бесконечно малого кубика, то по его граням в общем случае будут действовать напряжения, представленные на рис. 3.3. Совокупность напряжений на всех элементарных площадках, которые можно провести через какую-либо точку тела называется напряженным состоянием в данной точке .

Вычислим сумму моментов всех элементарных сил, действующих на элемент (рис.3.3), относительно координатных осей, так, например, для оси x с учетом равновесия элемента, имеем: