Последовательная RC-цепь. Дифференцирующие и интегрирующие RC-цепи Постоянная времени параллельно последовательная rc цепь

Влияние дуговых разрядов на стабильность работы контактов реле столь велико, что для инженера знание основ расчета и применения защитных схем является просто обязательным условием.

Искрогасящие цепи

Для уменьшения повреждения контактов дуговыми разрядами применяются:

  1. специальные реле с большими контактными промежутками (до 10 мм и более) и высокой скоростью выключения, обеспечиваемой сильными контактными пружинами;
  2. магнитный обдув контактов, реализуемый установкой постоянного магнита или электромагнита в плоскости контактного промежутка. Магнитное поле препятствует появлению и развитию дуги и эффективно оберегает контакты от обгорания;
  3. искрогасящие цепи, устанавливаемые параллельно контактам реле или параллельно нагрузке.

Первые два способа гарантируют высокую надежность за счет конструктивных мер при разработке реле. Внешних элементов защиты контактов при этом обычно не требуется, но специальные реле и магнитный обдув контактов достаточно экзотичны, дороги и отличаются большими размерами и солидной мощностью катушки (у реле с большим расстоянием между контактами сильные контактные пружины).

Промышленная электротехника ориентируется на недорогие стандартные реле, поэтому применение искрогасящих цепей является наиболее распространенным способом гашения дуговых разрядов на контактах.

Рис. 1. Эффективная защита существенно продлевает жизнь контактов:

Теоретически для гашения дуги можно использовать многие физические принципы, но на практике находят применение следующие эффективные и экономичные схемы:

  1. RС-цепи;
  2. обратные диоды;
  3. варисторы;
  4. комбинированные схемы, например, варистор + RС-цепь.

Защитные цепи можно включать:

  1. параллельно индуктивной нагрузке;
  2. параллельно контактам реле;
  3. параллельно контактам и нагрузке одновременно.

На рис. 1 показано типовое включение защитных схем при работе на постоянном токе.

Диодная схема (только для цепей постоянного тока)

Самая дешевая и широко применяемая схема для подавления напряжения самоиндукции. Кремниевый диод включается параллельно индуктивной нагрузке, при замыкании контактов и в установившемся режиме не оказывает никакого воздействия на работу схемы. При отключении нагрузки возникает напряжение самоиндукции, обратное по полярности рабочему напряжению, диод открывается и шунтирует индуктивную нагрузку.

Не следует считать, что диод ограничивает обратное напряжение на уровне прямого падения напряжения, равного 0,7-1 В. Вследствие конечного внутреннего сопротивления падение напряжения на диоде зависит от тока через диод. Мощные индуктивные нагрузки способны развивать импульсные токи самоиндукции до десятков ампер, что для мощных кремниевых диодов соответствует падению напряжения около 10-20 В. Диоды исключительно эффективно устраняют дуговые разряды и предохраняют контакты реле от обгорания лучше, чем любые другие схемы искрогашения.

Правила выбора обратного диода:

  1. рабочий ток и обратное напряжение диода должны быть сравнимы с номинальным напряжением и током нагрузки. Для нагрузок с рабочим напряжением до 250 ѴDС и рабочим током до 5 А вполне подходит распространенный кремниевый диод 1N4007 с обратным напряжением 1000 ѴDС и максимальным импульсным током до 20 А;
  2. выводы диода должны быть как можно короче;
  3. диод следует припаивать (привинчивать) непосредственно к индуктивной нагрузке, без длинных соединительных проводов – это улучшает ЭМС при процессах коммутации.

Достоинства диодной схемы:

  1. дешевизна и надежность;
  2. простой расчет;
  3. предельно достижимая эффективность.

Недостатки диодной схемы:

  1. диоды увеличивают время выключения индуктивных нагрузок в 5-10 раз, что очень нежелательно для нагрузок типа реле или контакторов (контакты размыкаются медленнее, что способствует их обгоранию), при этом диодная защита работает только в цепях постоянного тока.

Если последовательно с диодом включить ограничительное сопротивление, то влияние диодов на время выключения уменьшается, но дополнительные резисторы обуславливают более высокие обратные напряжения, чем только защитные диоды (на резисторе падает напряжение согласно закону Ома).

Стабилитроны (для цепей переменного и постоянного тока)

Вместо диода параллельно нагрузке устанавливается стабилитрон, а для цепей переменного тока два встречно-последовательно включенных стабилитрона. В такой схеме обратное напряжение ограничивается стабилитроном до напряжения стабилизации, что несколько снижает влияние искрозащитной цепи на время выключения нагрузки.

Учитывая внутреннее сопротивление стабилитрона, обратное напряжение на мощных индуктивных нагрузках будет больше напряжения стабилизации на величину падения напряжения на дифференциальном сопротивлении стабилитрона.

Выбор стабилитрона для схемы защиты:

  1. выбирается желаемое напряжение ограничения;
  2. выбирается необходимая мощность стабилитрона с учетом пикового тока, развиваемого нагрузкой при возникновении напряжения самоиндукции;
  3. проверяется истинное напряжение ограничения – для этого желателен эксперимент, а при измерении напряжения удобно пользоваться осциллографом.

Достоинства стабилитронов:

  1. меньше задержка выключения, чем в диодной схеме;
  2. стабилитроны можно применять в цепях любой полярности;
  3. стабилитроны для маломощных нагрузок дешевы;
  4. схема работает на переменном и постоянном токе.

Недостатки стабилитронов:

  1. меньше эффективность, чем в диодной схеме;
  2. для мощных нагрузок требуются дорогие стабилитроны;
  3. для очень мощных нагрузок схема со стабилитронами технически нереализуема.

Варисторная схема (для цепей переменного и постоянного тока)

Металл-оксидный варистор имеет вольт-амперную характеристику, похожую на биполярный стабилитрон. До момента приложения к выводам напряжения ограничения варистор практически отключен от схемы и характеризуется только микроамперными токами утечки и внутренней емкостью на уровне 150-1000 пФ. При увеличении напряжения варистор начинает плавно открываться, шунтируя своим внутренним сопротивлением индуктивную нагрузку.

При очень небольших размерах варисторы способны отводить большие импульсные токи: для варистора диаметром 7 мм разрядный ток может быть равен 500-1000 А (длительность импульса менее 100 мкс).

Расчет и монтаж варисторной защиты:

  1. задаются безопасным напряжением ограничения на индуктивной
    нагрузке;
  2. рассчитывается или измеряется ток, отдаваемый индуктивной нагрузкой при самоиндукции, для определения требуемого тока варистора;
  3. по каталогу подбирается варистор на требуемое напряжение ограничения, при необходимости варисторы можно устанавливать последовательно для подбора нужного напряжения;
  4. необходимо проверить: варистор должен быть закрыт во всем диапазоне рабочих напряжений на нагрузке (ток утечки менее 10-50 мкА);
  5. варистор необходимо монтировать на нагрузке по правилам, указанным для диодной защиты.

Достоинства варисторной защиты:

  1. варисторы работают в цепях переменного и постоянного тока;
  2. нормированное напряжение ограничения;
  3. незначительное влияние на задержку выключения;
  4. варисторы дешевы;
  5. варисторы идеально дополняют защитные RС-цепи при работе с высокими напряжениями на нагрузке.

Недостаток варисторной защиты:

  1. при применении только варисторов защита контактов реле от электрической дуги существенно хуже, чем в диодных цепях.

RС-цепи (для постоянного и переменного тока)

В отличие от диодных и варисторных схем RС-цепи можно устанавливать как параллельно нагрузке, так и параллельно контактам реле. В некоторых случаях нагрузка физически недоступна для монтажа на ней искрогасящих элементов, и тогда единственным способом защиты контактов остается шунтирование контактов RС-цепями.

В основе принципа действия RС-цепи лежит тот факт, что напряжение на конденсаторе не может изменяться мгновенно. Напряжение самоиндукции носит импульсный характер, причем фронт импульса для типичных электротехнических устройств имеет длительность на уровне 1 мкс. При приложении такого импульса к RС-цепи напряжение на конденсаторе начинает возрастать не мгновенно, а с постоянной времени, определяемой значениями R и С.

Если считать внутреннее сопротивление источника питания равным нулю, то подключение RС-цепи параллельно нагрузке эквивалентно включению RС-цепи параллельно контактам реле. В этом смысле принципиального различия в установке элементов искрогасящей цепочки для разных схем включения нет.

RС-цепь параллельно контактам реле

Конденсатор (см. рис. 2) при размыкании контактов реле начинает заряжаться. Если время заряда конденсатора до напряжения зажигания дуги на контактах выбирается большим, чем время расхождения контактов на расстояние, при котором дуга не может возникнуть, то контакты полностью защищены от появления дуги. Этот случай идеален и на практике маловероятен. В реальных случаях RС-цепь помогает при размыкании цепи поддерживать на контактах реле низкое напряжение и тем самым ослаблять влияние дуги.

Рис. 2. защитные элементы можно включить как параллельно контактам, так и параллельно нагрузке:

При включении только одного конденсатора параллельно контактам реле схема защиты тоже в принципе работает, но разряд конденсатора через контакты реле при их замыкании приводит к броску тока через контакты, что нежелательно. RС-цепь в этом смысле оптимизирует все переходные процессы как при замыкании, так и при размыкании контактов.

Расчет RС-цепи

Проще всего пользоваться универсальной номограммой, показанной на рис. 3. По известным напряжению источника питания U и току нагрузки I находят две точки на номограмме, после чего между точками проводится прямая линия, показывающая искомое значение сопротивления R . Значение емкости С отсчитывается по шкале рядом со шкалой тока I . Номограмма дает разработчику достаточно точные данные, при практической реализации схемы необходимо будет подобрать ближайшие стандартные значения для резистора и конденсатора RС-цепи.

Рис. 3. Самая удобная и точная номограмма для определения параметров защитной RС цепи (а этому графику уже более 50 лет!)

Выбор конденсатора и резистора RС-цепи

Конденсатор следует применять только с пленочным или бумажным диэлектриком, керамические конденсаторы для высоковольтных искрозащитных цепей непригодны. При выборе резистора необходимо помнить, что на нем при переходном процессе рассеивается большая мощность. Можно рекомендовать применять для RС-цепей резисторы мощностью 1-2 Вт, причем обязательно следует проверить, рассчитан ли резистор на высокое импульсное напряжение самоиндукции. Лучше всего применять проволочные резисторы, но хорошо работают и металлопленочные или углеродные с заливкой керамическими компаундами.

Достоинства RC-цепи:

  1. хорошее гашение дуги;
  2. отсутствие влияния на время выключения индуктивной нагрузки.

Особенности RC-цепи: необходимость применения высококачественных конденсатора и резистора. В целом же применение RC-цепей всегда экономически оправдано.

При установке искрогасящей цепи параллельно контактам на переменном токе при разомкнутых контактах реле через нагрузку будет протекать ток утечки, определяемый импедансом RС-цепи. Если нагрузка не допускает протекания тока утечки или это нежелательно по схемотехническим соображениям и в целях безопасности персонала, то необходимо устанавливать RС-цепь параллельно нагрузке.

Комбинация RС-цепи и диодной схемы

Такая схема (иногда называемая DRС-цепью) предельна по своей эффективности и позволяет свести к нулю все нежелательные эффекты от воздействия электрической дуги на контакты реле.

Достоинства DRC-цепи:

  1. электрический ресурс реле приближается к своему теоретическому пределу.

Недостатки DRC-цепи:

  1. диод вызывает значительную задержку выключения индуктивной нагрузки.

Комбинация RС-цепи и варистора

Если вместо диода установить варистор, то схема по параметрам будет идентична обычной RС-искрогасящей цепи, но ограничение варистором величины напряжения самоиндукции на нагрузке позволяет применять менее высоковольтные и более дешевые конденсатор и резистор.

RС-цепь параллельно нагрузке

Применяется там, где нежелательна или невозможна установка RС-цепи параллельно контактам реле. Для расчета предлагаются следующие ориентировочные значения элементов:

  1. С = 0,5-1 мкФ на 1 А тока нагрузки;
  2. R = 0,5-1 Ом на 1 В напряжения на нагрузке;
  3. R = 50-100% от сопротивления нагрузки.

После расчета номиналов R и С необходимо проверить возникающую при этом дополнительную нагрузку контактов реле при переходном процессе (заряде конденсатора), как это было описано выше.

Приведенные значения R и С не являются оптимальными. Если требуется максимально полная защита контактов и реализация максимального ресурса реле, то необходимо провести эксперимент и опытным путем подобрать резистор и конденсатор, наблюдая переходные процессы с помощью осциллографа.

Достоинства RC-цепи параллельно нагрузке:

  1. хорошее подавление дуги;
  2. нет токов утечки в нагрузку через разомкнутые контакты реле.

Недостатки:

  1. при токе нагрузки более 10 А большие значения емкости приводят к необходимости установки относительно дорогих и больших по габаритам конденсаторов;
  2. для оптимизации схемы желательна экспериментальная проверка и подбор элементов.

На фотографиях показаны осциллограммы напряжения на индуктивной нагрузке в момент размыкания питания без шунтирования (рис. 4) и с установленной RСЕ цепью (рис. 5). Обе осциллограммы имеют вертикальный масштаб 100 вольт/деление.

Рис. 4. Отключение индуктивной нагрузки вызывает очень сложный переходный процесс

Рис. 5. Правильно подобранная защитная RСЕцепочка полностью устраняет переходный процесс

Специального комментария здесь не требуется, эффект от установки искрогасящей цепи виден сразу. Бросается в глаза процесс генерации высокочастотной высоковольтной помехи в момент размыкания контактов.

Фотографии взяты из университетского отчета по оптимизации RС-цепей, установленных параллельно контактам реле. Автор отчета провел сложный математический анализ поведения индуктивной нагрузки с шунтом в виде RС-цепи, но в итоге рекомендации по расчету элементов были сведены к двум формулам:

С = І 2 /10

где С – емкость RС-цепи, мкФ; I – рабочий ток нагрузки, А;

R = Е о /(10І(1 + 50/Е о))

где Е о – напряжение на нагрузке; В, I – рабочий ток нагрузки, А; R – сопротивление RС-цепи, Ом.

Ответ: С = 0,1 мкФ, R = 20 Ом. Эти параметры отлично согласуются с номограммой, приведенной ранее.

В заключение познакомимся с таблицей из этого же отчета, где приведены практически измеренные напряжение и время задержки для различных искрогасящих цепей. В качестве индуктивной нагрузки служило электромагнитное реле с напряжением катушки 28 ѴDС/1 W, искрогасящая цепь устанавливалась параллельно катушке реле.

Шунт параллельно катушке реле Пиковое напряжение выброса на катушке реле (% от рабочего напряжения) Время выключения реле, мс (% от паспортного значения)
Без шунта 950 (3400 %) 1,5 (100 %)
Конденсатор 0,22 мкФ 120 (428 %) 1,55 (103 %)
Стабилитрон, рабочее напряжение 60 В 190 (678 %) 1,7 (113 %)
Диод + резистор 470 Ом 80 (286 %) 5,4 (360 %)
Варистор, напряжение ограничения 60 В 64 (229 %) 2,7 (280 %)

Индуктивные нагрузки и электромагнитная совместимость (ЭМС)

Требования ЭМС являются обязательным условием работы электротехнического оборудования и понимаются как:

  1. способность оборудования нормально работать в условиях воздействия мощных электромагнитных помех;
  2. свойство не создавать при работе электромагнитные помехи более предписанного стандартами уровня.

Реле малочувствительно к высокочастотным помехам, но присутствие мощных электромагнитных полей вблизи катушки реле влияет на напряжение включения и выключения реле. При установке реле рядом с трансформаторами, электромагнитами и электродвигателями обязательно требуется экспериментальная проверка правильности срабатывания и выключения реле. При установке большого количества реле вплотную на одной монтажной панели или на печатной плате также имеется взаимовлияние работы одного реле на напряжение включения и выключения остальных реле. В каталогах иногда даются указания на минимальное расстояние между однотипными реле, гарантирующие их нормальную работу. При отсутствии таких указаний можно пользоваться эмпирическим правилом, по которому расстояние между центрами катушек реле должно быть не менее 1,5 от величины их диаметра. При необходимости плотного монтажа реле на печатной плате требуется опытная проверка взаимовлияния реле.

Электромагнитное реле может создавать мощные помехи, особенно при работе с индуктивными нагрузками. Показанный на рис. 4 высокочастотный сигнал является мощной помехой, способной повлиять на нормальную работу чувствительного электронного оборудования, работающего рядом с реле частота помехи колеблется от 5 до 50 МГц, а мощность этой помехи составляет несколько сотен мВт, что совершенно недопустимо по современным нормам ЭМС. Искрогасящие цепи позволяют довести уровень помех от релейного оборудования до предписываемого стандартами безопасного уровня.

Применение реле в заземленных металлических корпусах положительно сказывается на ЭМС, но необходимо помнить, что при заземлении металлического корпуса у большинства реле снижается напряжение изоляции между контактами и катушкой.

Изоляция между контактами реле

Между разомкнутыми контактами реле имеется промежуток, зависящий от конструкции реле. Воздух в промежутке (или инертный газ для газонаполненных реле) выполняет роль изолятора. Предполагается, что изолирующие материалы корпуса и контактной группы реле характеризуются более высокими пробивными напряжениями, чем воздух. При отсутствии загрязнений между контактами рассмотрение изоляционных свойств контактных групп можно ограничить свойствами только воздушного зазора.

На рис. 6 (немного ниже в статье) показана зависимость пробивного напряжения от величины расстояния между контактами реле. В каталогах можно найти несколько вариантов значений предельного напряжения между контактами, а именно:

  1. предельное значение постоянно приложенного к двум контактам напряжения;
  2. импульсное значение напряжения изоляции (surge voltage);
  3. предельное значение напряжения между контактами в течение определенного времени (обычно 1 минута, за это время ток утечки не должен превысить 1 или 5 мА при указанной величине напряжения).

Если речь идет об импульсном напряжении изоляции, то импульс представляет собой стандартный тестовый сигнал ІЕС-255-5 с временем нарастания до пикового значения 1,2 мкс и временем спада до 50% амплитуды 50 мкс.

Если разработчику необходимо реле с особыми требованиями к изоляции контактов, то получить информацию о соответствии этим требованиям можно либо у фирмы-производителя, либо путем проведения самостоятельного тестирования. В последнем случае необходимо помнить, что производитель реле не будет нести ответственности за полученные таким способом результаты измерений.

Материалы для контактов реле

От материала контактов зависят такие параметры самих контактов и реле в целом, как:

  1. нагрузочная способность по току, то есть способность эффективного отвода тепла от точки контакта;
  2. возможность коммутации индуктивных нагрузок;
  3. переходное сопротивление контакта;
  4. предельная температура окружающей среды при эксплуатации;
  5. устойчивость материала контактов к миграции, особенно при коммутации индуктивных нагрузок на постоянном токе;
  6. устойчивость материала контактов к испарению. Испаряющийся металл поддерживает развитие электрической дуги и ухудшает изоляцию при осаждении металла на изоляторы контактов и корпус реле;
  7. устойчивость контактов к механическому износу;
  8. эластичность контактов для поглощения кинетической энергии и предотвращения чрезмерного дребезга;
  9. устойчивость металла контактов к воздействию корродирующих газов из окружающей среды.

Рис. 7. Каждый материал рассчитан на работу контактов в определенном диапазоне токов, но может с осторожностью применяться и для коммутации слабых сигналов

Некоторые полезные качества материалов не исключают друг друга, например, хорошие проводники тока всегда обладают высокой теплопроводностью. При этом хорошие проводники с низким удельным сопротивлением обычно слишком мягкие и легко поддаются износу.

Температура плавления выше у специальных контактных сплавов (например, AgNi или AgSnO), но такие материалы совсем не подходят для коммутации микротоков.

В итоге разработчик реле останавливается на определенном компромиссе между качеством, ценой и габаритами реле. Этот компромисс привел к стандартизации областей применения различных контактов реле, как показано на рис. 7. Области применения различных материалов для контактов достаточно условны, но разработчик должен понимать, что при работе контактов на границе «выделенного» для них диапазона токов и напряжений может потребоваться экспериментальная проверка надежности такого применения. Эксперимент очень прост и заключается в измерении переходного сопротивления контактов для партии однотипных реле, причем желательно тестировать не только что сошедшие с конвейера реле, а прошедшие транспортировку и полежавшие некоторое время на складе. Оптимальным сроком «вылеживания» на складе является 3-6 месяцев, за это время нормализуются процессы старения в пластиках и соединениях металлпластик.

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/ RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Замечания и предложения принимаются и приветствуются!

Расчет RC - цепи, изменения напряжения на конденсаторе в зависимости от времени. Постоянная времени. (10+)

RC - цепь. Постоянная времени. Зарядка и разрядка конденсатора

Соединим конденсатор, резистор и источник напряжения так, как показано на схеме:

Если в начальный момент напряжение на конденсаторе отличается от напряжения источника питания, то через резистор потечет ток, а напряжение на конденсаторе будет со временем изменяться, приближаться к напряжению источника питания. Полезно уметь рассчитывать время, за которое напряжение изменится от заданного начального до заданного конечного значения. Такие расчеты необходимы для проектирования цепей задержки, релаксационных генераторов, источников пилообразного напряжения.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

RC - фильтр высоких, низких частот. Высокочастотный, низкочастотный. Р...
Онлайн расчет RC фильтров высоких и низких частот. Определение фазы сигнала...

Практика проектирования электронных схем. Самоучитель электроники....
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы....


Обзор схем бестрансформаторных источников питания...


Схема импульсного блока питания. Расчет на разные напряжения и токи....

Индуктивность. Генри. Henry. Гн. Единицы измерения. Доли, миллигенри, ...
Понятие индуктивности. Единицы измерения. Катушки индуктивности....


Расчет онлайн гасящего конденсатора бестрансформаторного источника питания...

Детектор, датчик, обнаружитель скрытой проводки, разрывов, обрывов. Сх...
Схема прибора для обнаружения скрытой проводки и ее разрывов для самостоятельног...

Светомузыка, светомузыкальная приставка своими руками. Схема, конструк...
Как самому собрать свето-музыку. Оригинальная конструкция свето-музыкальной сист...


Интегрирующая цепь - RC цепь, в которой напряжение снимается с конденсатора C и соблюдается соотношение t ц >>t и.

Назначение интегрирующих цепей.

Интегрирующая цепь предназначена для формирования импульсов большой длительности. Т.е. для удлинения или расширения импульсов, преобразования импульсов по интегральному закону, получения линейно изменяющегося напряжения. Отсюда другое название интегрирующей цепи - удлиняющая цепь.

Классификация интегрирующих цепей.

По элементной базе интегрирующие цепи классифицируются следующим образом:

· интегрирующие RC цепи на операционном усилителе.

В данном разделе будут рассматриваться только RC интегрирующие цепи.

Условное обозначение интегрирующих цепей:

Принцип действия RC интегрирующих цепей

Принцип действия RC интегрирующих цепей основан на заряде и разряде конденсатора.

При этом напряжение на выходе такой цепи изменяется по закону

Наиболее оптимальное соотношение длительности импульса и постоянной времени цепи: t ц 10t и, т.е. t и /t ц <0,1.

Анализ данного выражения показывает, что U 2 =0, если U 1 =const, т.е. если скорость изменения dU 1 /dt=0. Если U 2 =const и не равно нулю, то напряжение на входе цепи U 1 линейно изменяется.

Схема RC интегрирующей цепи имеет следующий вид:


Работа схемы рассмотрена выше.

Применение RC интегрирующей цепи.

RC интегрирующие цепи применяются для

· селекции импульсов по длительности и сравнения импульсных сигналов, в устройствах формирования линейно изменяющихся сигналов;

· для получения линейно изменяющегося напряжения транзисторного ключа;

· для расширения импульсов;

· осуществления фильтрации переменной составляющей входного напряжения;

· для выполнения операции математического интегрирования.

Интегрирующая RC цепь так же не лишена недостатков, присущих и дифференцирующим цепям.


Улучшить интегрирующие свойства RC интегрирующих цепей можно при использовании операционного усилителя. Такое устройство получило название интегратора. Схему интегратора можно представить в следующем виде.

Работа схемы подробно рассматривалась в разделе аналоговые устройства данной дисциплины.

Таким образом, видно, что выходное напряжение пропорционально интегралу входного напряжения. Ошибка в интеграторе в К раз меньше чем в RC цепи (где К - коэффициент усиления операционного усилителя).

Интересен случай, когда на интегрирующую цепь подаётся последовательность импульсов. При этом возможно два случая:

1.Когда постоянная разряда конденсатора меньше периода следования импульсов, поступающих на вход цепи, т.е. Т п >t разряда. В этом случае конденсатор успевает полностью разрядиться до прихода на вход схемы очередного импульса. И последующий импульс снова заряжает конденсатор от нулевого значения до максимального.


2. Когда постоянная разряда конденсатора больше периода следования импульсов, поступающих на вход цепи, т.е. Т п

Постоянная времени определяется по формуле

где τ - постоянная времени в секундах, R - сопротивление в омах и C - емкость в фарадах. Постоянная времени RC-цепи определяется как время, которое требуется, чтобы конденсатор зарядился до 63,2% его максимально возможного заряда при условии, что начальный заряд нулевой. Отметим, что конденсатор зарядится до 63,2% за время τ и почти полностью (до 99,3%) зарядится за время 5τ .

Энергия E , которую хранит полностью заряженный до напряжения V конденсатор, при условии, что время заряда T ≫ τ , определяется формулой

где C - емкость в фарадах и V - напряжение в вольтах.

Максимальный ток I определяется по закону Ома:

Максимальный заряд Q определяется по формуле

где C - емкость в фарадах и V - напряжение в вольтах.

Применение

Конденсаторы часто используются в различных электрических и электронных устройствах и системах. Вероятно, вы не найдете ни одно электронное устройство, в котором не содержится хотя бы один конденсатор. Конденсаторы используются для хранения энергии, обеспечения импульсов энергии, для фильтрации питающего напряжения, для коррекции коэффициента мощности, для развязки по постоянному току, в электронных частотных фильтрах, для фильтрации шумов, для запуска электродвигателей, для хранения информации, для настройки колебательных контуров, в различных датчиках, в емкостных экранах мобильных телефонов... Этот список можно продолжать до бесконечности.

Резистивно-емкостные (RC) цепи обычно используются в качестве простых фильтров нижних и верхних частот, а также простейших интегрирующих и дифференцирующих цепей.

Резистивно-емкостные фильтры нижних частот

Фильтры нижних частот пропускают только низкочастотные сигналы и подавляют высокочастотные сигналы. Частота среза определяется компонентами фильтра.

Такие фильтры широко используются в электронике. Например, их используют в сабвуферах для того, чтобы не подавать на них звуки высоких частот, которые они не могут воспроизводить. Фильтры нижних частот используются также в радиопередатчиках для блокировки нежелательных высокочастотных составляющих в передаваемом сигнале. У тех, кто пользуется ADSL подключением к Интернету, всегда установлены частотные разделители с такими фильтрами нижних частот, которые предотвращают возникновение помех в аналоговых устройствах (телефонах) от сигналов DSL и воздействия помех от аналоговых устройств на оборудование DSL, подключенное к обычной телефонной линии.

Фильтры нижних частот используются для обработки сигналов перед их аналого-цифровым преобразованием. Такие фильтры улучшают качество аналоговых сигналов при их дискретизации и необходимы для подавления высокочастотных компонентов сигнала выше частоты Найквиста таким образом, чтобы он удовлетворял требованиям теоремы Котельникова для данной частоты дискретизации, то есть максимальная частота не должна быть выше половины частоты выборки.

На верхнем рисунке показан простой фильтр нижних частот. В нем используются только пассивные компоненты, поэтому он называется пассивным фильтром нижних частот (ФНЧ). В более сложных пассивных ФНЧ используются также катушки индуктивности.

В отличие от пассивных фильтров нижних частот, в активных фильтрах используются усилительные устройства, например, транзисторы или операционные усилители. В пассивные фильтрах также часто имеются операционные усилители, применяемые для развязки. В зависимости от количества конденсаторов и катушек индуктивности, влияющих на крутизну частотной характеристики фильтра, они обычно называются «фильтрами первого порядка», «второго порядка» и так далее. Фильтр, состоящий только из одного резистора и одного конденсатора, называется фильтром первого порядка.

RC-фильтры верхних частот

Фильтры верхних частот пропускают только высокочастотные составляющие сигналов и ослабляют низкочастотные составляющие. Фильтры верхних частот используются, например, в разделительных фильтрах звуковых частот (кроссоверах) для подавления низкочастотных составляющих в сигналах, подаваемых на высокочастотные динамики («пищалки»), которые не могут воспроизводить такие сигналы и к тому же обладают малой мощностью по сравнению с мощностью низкочастотных сигналов.

Фильтры верхних частот часто используются для блокировки постоянной составляющей сигналов в тех случаях, когда она нежелательна. Например, в профессиональных микрофонах очень часто используется «фантомное» питание постоянным напряжением, которое подается по микрофонному кабелю. В то же время микрофон записывает переменные сигналы, такие как человеческий голос или музыка. Постоянное напряжение не должно появляться на выходе микрофона и не должно поступать на вход микрофонного усилителя, поэтому для его блокировки используется фильтр верхних частот.

Если фильтр нижних частот и фильтр верхних частот стоят друг за другом, они образуют полосовой фильтр , который пропускает частоты только в определенной полосе частот и не пропускает частоты за пределами этой полосы. Такие фильтры широко используются в радиоприемниках и радиопередатчиках. В приемниках полосовые фильтры используются только для селективного пропускания и усиления сигналов радиостанции в требуемой узкой полосе частот. При этом сигналы других радиостанций за пределами этой полосы подавляются. Передатчики могут передавать радиосигналы только в определенном разрешенном для них диапазоне частот. Поэтому в них используются полосовые фильтры для ограничения полосы передаваемого сигнала таким образом, что он вписывался в допустимые пределы.